In number theory, the Embree–Trefethen constant is a threshold value labelled β*.
For a fixed positive number β, consider the recurrence
where the sign in the sum is chosen at random for each n independently with equal probabilities for "+" and "−".
It can be proven that for any choice of β, the limit
exists almost surely. In informal words, the sequence behaves exponentially with probability one, and σ(β) can be interpreted as its almost sure rate of exponential growth.
We have
so solutions to this recurrence decay exponentially as n→∞ with probability 1, and
so they grow exponentially.
Regarding values of σ, we have:
The constant is named after applied mathematicians Mark Embree and Lloyd N. Trefethen.